
Introduction Design Evaluation

Accelerating Checkpoint-Restart
with a Hardware Core

Ashwin Mendon, Ron Sass Zachary Baker, Justin Tripp
{aamendon,rsass}@uncc.edu {zbaker,jtripp}@lanl.gov

Reconfigurable Computing Systems Lab Los Almos National Lab

25 June 2012

0/24

Introduction Design Evaluation

Motivation
System MTBF decreases with increasing
number of cores and supporting
components

Θsys =
Θnode

n
=

5 yrs
100000

≈ 26 mins

Time to perform a checkpoint increases
with application size
I/O bandwidth to non-volatile storage limits
checkpoint frequency

1/24

Introduction Design Evaluation

Checkpoint/Restart Mechanisms
Application

Filesystem

Device Driver

Disk Controller

Disk

Operating System

User Space

Hardware

Kernel Space

Software

Checkpoint/
 Restart
 Library

a. User Level

Application

Filesystem

Device Driver

Disk Controller

Disk

Operating
System

Checkpoint/
 Restart
 Module

Software

Hardware

User Space
Kernel Space

b. System Level

Application

Checkpoint/
 Restart
 Core

Disk Controller

Disk

Software

Hardware

c. Hardware-assisted

2/24

Introduction Design Evaluation

Checkpoint/Restart Mechanisms
Application

Filesystem

Device Driver

Disk Controller

Disk

Operating System

User Space

Hardware

Kernel Space

Software

Checkpoint/
 Restart
 Library

a. User Level

Application

Filesystem

Device Driver

Disk Controller

Disk

Operating
System

Checkpoint/
 Restart
 Module

Software

Hardware

User Space
Kernel Space

b. System Level

Application

Checkpoint/
 Restart
 Core

Disk Controller

Disk

Software

Hardware

c. Hardware-assisted

2/24

Introduction Design Evaluation

Research Goals
Key Question
Will a hardware-assist provide significant
improvement over current approaches?

By improvement, we mean...

Higher performance

Better SATA bandwidth
Lower overhead (compared to software)

Ultimately, are checkpoints/restarts faster?

Very modest resources

3/24

Introduction Design Evaluation

Checkpoint/Restart Prototype

Implemented prototype C/R core
Implemented SATA2 disk controller core
Integrated both on a FPGA that has access
to node’s memory

4/24

Introduction Design Evaluation

C/R Block Diagram

SSD

FPGA

DRAM

M
P
M
C

MBLAZE

SATA Controller

Checkpoint
 Core

SATA

NPI

MGT

MGT : Multi Gigabit Transceiver
MPMC : Multi-port Memory Controller
NPI : Native Port Interface
MBLAZE : Microblaze Embedded CPU
SSD : Solid State Drive

data

control
PLB

Note: MBLAZE is a processor used to control experiments; it would not be part of the proposed approach.

5/24

Introduction Design Evaluation

Performance and Size

To evaluate the proposed solution

Investigated bandwidth of various checkpoint sizes

Measured checkpoint speeds versus raw SSD I/O

Measured software overhead on conventional Linux
node for reference

Compare C/R core resources relative to a processor
core

6/24

Introduction Design Evaluation

Bandwidth

Xilinx ML605
(V6 LX240T)

OCZ Agility 2
SSD

C/R and SATA
instrumented to
gather perf. data

 50

 100

 150

 200

 250

 300

4 8 16 32 64 128 256 512 1024 2048 4096

B
a
n
d
w

id
th

 (
M

B
/s

)

File Size (KB)

Checkpoint-Restart Core Bandwidth with SSD

Ideal Bandwidth
Restart Bandwidth

Checkpoint Bandwidth

7/24

Introduction Design Evaluation

Overhead of C/R Core

File Size Checkpoint Restart SATA Write SATA Read
Bytes time (µs) time (µs) time (µs) time (µs)
4096 24.48 102.76 24.35 102.67
8192 38.4 109.69 38.24 109.61
16384 68.01 140.18 67.9 140.12
32768 127.59 199.45 127.44 199.37

8/24

Introduction Design Evaluation

Software Overhead

SSD connected to an 2.1 GHz AMD Opteron
Machine with 16 GB RAM

Fio, a Linux benchmarking tool was used for raw
read/writes

32 MB Seq Read 32 MB Seq Write
time (ms) time (ms)

CPU 155.07 331.25
FPGA 119.99 120.92

Overhead: 30% for Reads and 173% for Writes

9/24

Introduction Design Evaluation

Software Effect on Bandwidth

Seq Read BW Seq Write BW
(MB/s) MB/s)

CPU 206.35 96.6
FPGA 279.72 277.47

Bandwidth Lost:
26% for Reads
65% for Writes

10/24

Introduction Design Evaluation

Resources Required

V6 is 40 nm device with ≈ 2 billion transistors

units: 150,720 LUTs, 301,440 Flip/Flops, 416 BRAMs, 20
transceivers

Resources CR SATA CR+SATA % Device
LUTs 1,280 1,531 2,811 1.8%
F/Fs 1,030 1,121 2,151 0.7%

BRAMs 4 3 7 1.6%
MGT 0 1 1 5%

11/24

Introduction Design Evaluation

Conclusion

The propose C/R solution is...
very small (fraction of a processor core),
bandwidth efficient (approaches i/f speed),
much faster than software.

These results suggest that the HPC community
could benefit (if node-level storage was
available).

12/24

Introduction Design Evaluation

Future Work

Presently, no filesystem (just sequential
files)
Might it be valuable to integrate with
async/incremental system?
How to implement....

Dark silicon on COTS, enabled for HPC
machines?
Integrated SoC (ARM, BG node)?
As a peripheral card (maybe no SATA i/f?)

13/24

Introduction Design Evaluation

Thank You

14/24

Introduction Design Evaluation

Interface to Memory Controller and
SATA HBA

SATA HBA CORE

NEW CMD

REQ_TYPE

ADDRESS

N_SECTORS

DATA

STATUS

CHECKPOINT
 RESTART
 COREDATA

STATUS

ADDRESS

REQ

SIZE

N
P
I

I
F

S
A
T
A

I
F

G
T
X

I
F

15/24

	Introduction
	Design
	Evaluation

